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The pathophysiology of AF is complex and incompletely understood 

to date.1,2 AF is a progressive disease of the atria involving a 

multitude of mechanisms related to its initiation, maintenance and 

progression. Experimental evidence suggest that AF is characterised 

by alternations in atrial size, shape electrophysiology, autonomic 

innervation, and cardiomyocyte metabolism, as well as development 

of atrial fibrosis.1 However, there are several challenges in translating 

these experimental findings into actionable treatment strategies 

applicable in clinical practice.3 

The interplay between experimentally observed mechanisms on 

a cohort-specific or patient-specific basis, and their contribution 

in development and progression of AF is yet to be elucidated. Our 

incomplete understanding of AF mechanisms is reflected in the modest 

efficacy of current therapeutic approaches, particularly in patients with 

persistent AF, with recurrence rates of up to ~50%, despite advances in 

mapping and ablation technology.4–8

Computational modelling and simulations are essential tools in 

physical sciences and engineering, and over the last decades 

have been increasingly utilised in cardiac electrophysiology in the 

study of complex arrhythmias, such as AF.9 Multi-scale models 

of cardiac electrophysiology provide a framework for integrating 

experimental and clinical findings, and linking micro-scale phenomena 

to whole-organ emergent behaviours. Computational modelling is 

now an essential part of mechanistic research in AF, because 

it can complement experimental observations and suggest novel 

mechanisms. Furthermore, whole-atria simulations are currently used 

in designing novel, individualised therapeutic strategies, contributing to 

the ongoing efforts towards precision medicine in cardiology.10,11

In this article, we focus on recent advancements in applications of 

atrial modelling in elucidating AF mechanisms. We summarise studies 

that use atrial modelling to investigate AF mechanisms that have 

taken place since our last review on the subject in 2014.12 Recent 

advances in the use of atrial modelling in AF therapeutics and ablation 

planning are summarised in a separate contemporary review by our 

group.10 Specifically, we summarise advancements in development 

of multi-scale AF models and then focus on the mechanistic links 

between alternations in atrial structure and electrophysiology with 

AF through the lens of computational modelling. We highlight how 

AF modelling complements experimental data, in ways that would 

not be possible outside the framework of simulations, as well as 

how AF models have revealed novel AF mechanisms. We also review 

modelling approaches that capture cohort-level variability and provide 

cohort-specific mechanistic insights. We conclude the review with 

a summary of the future perspectives for the contributions of atrial 

modelling in the mechanistic understanding of AF, towards the goal of 

understanding patient-specific AF mechanisms that would allow for 

personalised treatment.
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Recent Advances in Atrial Modelling
Multi-scale atrial models are mathematical models that link 

electrophysiological phenomena at the cell, tissue and whole atria 

scale (Figure 1). The cell scale includes the equations that describe the 

kinetics of different ionic channels and regulatory proteins, that are 

coupled to produce the transmembrane potential of an atrial myocyte. 

The tissue scale includes cell-to-cell coupling and fibre orientation 

that govern electrical propagation. Electrical propagation is most 

commonly modelled using the mono-domain formulation coupled with 

cell models, while the bi-domain formulation is less frequently used 

due to its high computational cost. Last, the whole atria scale includes 

the entire complexity of atrial 3D anatomy and distribution of fibrosis.

In this section, first we focus on the current state and recent advances 

in the cell-scale representation of atrial electrophysiology in patients 

with AF. Next, we describe advances in tissue-scale and whole-

atrial scale representation of atrial myocardium (atrial geometry, 

ultrastructure and fibrosis); the description is brief, as this topic has 

been extensively covered in a separate review by our group.10 Last, we 

summarise advances in development of atrial models that incorporate 

mechano-electrical feedback.

Cell-scale Representation of Atrial 
Electrophysiology in AF
Biophysically Detailed Models of Atrial Cellular Electrophysiology
Biophysically detailed models of cellular electrophysiology typically 

follow the Hodgkin–Huxley model and represent current flow through 

ion channels, pumps, and exchangers, as well as sub-cellular calcium 

cycling. Markov models of ion channels are increasingly used to 

describe channel gating and modulation; and are important in 

modelling of the electrophysiological effect of medications and 

ion channel mutations.13–16 The most commonly used human atrial 

cell models are those developed by Courtemanche-Ramirez-Nattel, 

Nygren et al., Koivumaki et al., Maleckar et al., Grandi et al. and 

Coleman et al.17–22 The details of these and other atrial cell models 

have been recently reviewed.12,23 These cell models have been used in 

studies that investigate AF mechanisms using tissue and whole-atria 

simulations.24–38 Whole atria simulations using biophysically detailed cell 

models are typically computationally expensive, requiring execution on 

high-performance computer clusters.

Models Including the Ultra-rapid Outward K+ Current
The ultra-rapid outward K+ current (IKur) is a major repolarising current 

in human atria and accounts for the relatively short action potential 

duration (APD) of the atria.39 Until recently, available atrial cellular 

electrophysiology models did not account for experimentally-observed 

IKur inactivation dynamics. Aguilar et al. incorporated an experimentally 

derived formulation of IKur in the biophysically detailed ionic model of 

Courtemanche et al.40 This formulation accurately reproduces time-

, voltage- and frequency-dependent inactivation of the channel.40 

This ionic model has been used in tissue-level simulations to gain 

mechanistic insights in the role of IKur in the presence or absence 

of AF-induced ionic remodelling. The model of Aguilar et al. has 

not been used in organ-level simulations yet. The significance of 

accurate modelling of IKur is that inhibition of IKur has been considered 

as an ideal anti-arrhythmic drug development strategy, due to the 

selective atrial localisation of IKur. Computational modelling has been 

used to evaluate the effect of different IKur inhibitors in terminating AF, 

understand the effect of AF-induced ionic remodelling on the efficacy 

of IKur inhibition and define optimal IKur inhibitors properties, such as 

kinetics and state-dependent binding, that maximise AF selectivity 

in human atrial cardiomyocytes.14,40,41 The efficacy of IKur inhibition in 

patients with paroxysmal AF has recently been evaluated in two clinical 

trials. DIAGRAF-IKUR demonstrated that IKur inhibitor S66913 failed to 

demonstrate efficacy in patients with paroxysmal AF.42 The second 

trial evaluates BMS-919373 and has recently been completed, but the 

results are not available yet (NCT02156076).

Phenomenological Atrial Models
Phenomenological cell models do not provide a biophysically 

accurate description of cellular scale electrophysiology, but constitute 

simplified formulations that reproduce an accurate action potential 

shape and important electrophysiological properties, such as APD 

restitution, conduction velocity restitution and wave curvature. The two 

phenomenological models that have been used in tissue- or organ-

level atrial simulations are the atrial Bueno-Orovio–Cherry–Fenton 

model and the Mitchel-Schaeffer model. 

The Bueno-Orovio–Cherry–Fenton model is a phenomenological 

cell model that describes ventricular electrophysiology, using four 

state variables.43 The atrial Bueno-Orovio–Cherry–Fenton model has 

been adapted to capture atrial electrophysiology and in 2D tissue-

scale simulations it accurately replicates the characteristic features 

of re-entrant excitation patterns as they are observed in similar 

simulations using biophysically detailed models.44 The modified 

Mitchel-Schaeffer model has two state variables and four parameters, 

and has been adapted to be robust to any pacemaker behaviour.45 

The simplicity of the Mitchel-Schaeffer model allows for ultra-fast 

computation. Phenomenological models, since they are considerably 

less complex than biophysically detailed models, require significantly 

reduced run time and are computationally more efficient. 

Given their reduced complexity, phenomenological models are suitable 

for calibration to clinical measurements, such as activation sequences 

(as described in the following section), less prone to overfitting and 

easier to validate compared to biophysically detailed models.46–49 

However, since phenomenological models do not incorporate specific 

Atrial models are constructed in three different spatial scales: cell-level scale, tissue-level 
scale and organ-level scale. Cell-level atrial electrophysiology: schematic of the membrane 
channels and an example of the atrial action potentials obtained in fibrotic (green) and normal 
cells (black). Tissue scale: myocyte coupling and atrial tissue architecture create a preferential 
direction for wave propagation along the atrial fibres. Organ scale electrophysiology: late-
gadolinium enhanced MRI can be used to segment normal tissue from fibrotic region and for 
the 3D reconstruction of the atrial geometry to simulate atrial activation.

Figure 1: Multi-scale Model Generation
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ionic channels, they may be less suitable for studies evaluating the 

complex effect of antiarrhythmic medications.

Development of Patient-specific Action Potential Models 
of Atrial Myocardium
Development of patient-specific atrial action potential models 

is an active area of research, since differences in cellular scale 

electrophysiology can dramatically affect the emergent atrial fibrillation 

dynamics in tissue- or organ-scale simulations.47–49 This was highlighted 

in a recent study by Lombardo et al.47 In this study, action potential 

morphology, APD restitution and conduction velocity restitution were 

assessed in five patients with AF during invasive electrophysiological 

studies, using monophasic action potential catheters and standard 

multi-electrode electrophysiology catheters. These parameters 

were used to calibrate a phenomenological (Fenton-Karma) and a 

biophysically detailed (Koivumäki) atrial ionic model with a stochastic 

optimisation approach. Parameters of the calibrated models were 

significantly different from published sets and between patients. Both 

biophysically detailed and phenomenological models produced spiral 

waves on 2D simulations that had similar dynamics for each patient, 

but largely varied between patients.47 These results underscore the 

need for development of patient-specific atrial action potential models.

The Mitchel-Schaeffer model has been used for development of 

patient-specific atrial action potential models in tissue- and organ-

scale studies, as it has a very small number of parameters, allowing 

for computationally tractable calibration.46,48,49 Calibration of a tissue-

scale formulation of the Mitchel-Schaeffer model using synthetic data 

and patient-derived atrial effective refractory periods and conduction 

velocity restitution was done in five patients with AF.48,49 Calibrated 

models to different patients yielded different spiral wave dynamics 

in simple 2D simulations.48,49 Atrial effective refractory period, local 

activation time and conduction velocity measurements from multiple 

locations in the left atrium, have been used to personalise the action 

potential parameters and tissue conductivity of a 2D implementation 

of the Mitchel-Schaeffer model on a realistic 3D atrial surface in seven 

patients with paroxysmal AF.46 These models were derived during 

pacing from the coronary sinus and then validated, by accurately 

predicting the activation sequence of the left atrium during pacing 

from the high right atrium.46

Future studies should focus on developing optimisation approaches 

that are suitable for the unique nature of cardiac electrophysiology 

models. Cardiac electrophysiology models involve highly non-linear 

partial differential equations, with high-dimensional, frequently 

discontinuous parameter spaces and complex geometry. Recent 

research has suggested that hybrid optimisation approaches that 

combine stochastic and deterministic processes at each iteration are 

superior to purely stochastic or deterministic approaches.50 AF models 

with personalised electrophysiology should be validated by predicting 

the location of re-entrant drivers that sustain AF and comparing it with 

clinical observations. It remains unclear how close we can come to 

electrophysiological personalisation of atrial models, and what level of 

personalisation is relevant for accurate mechanistical assessment and 

clinical predictions in patients with AF.

Modelling of Atrial Geometry, Ultrastructure and 
Fibrosis
A detailed review of the state-of-the-art methods for modelling 

atrial geometry, ultrastructure (fibre orientation) and fibrosis has 

recently been published by our team.10 In brief, atrial models can 

have idealised or realistic geometry. Models with idealised atrial 

geometry abstract the left atrium (LA) as an ellipsoid surface 

(or volume) with orifices that correspond to the four pulmonary 

veins and the mitral valve (i.e. topologically equivalent to the 

LA).51,52 Models with realistic atrial geometry are reconstructed 

from medical imaging and specifically from cardiac MRI, cardiac CT 

scans or invasively acquired electroanatomic maps.31,35–37,46,53–70 The 

reconstructed models can be 3D surface models (manifolds), 3D 

bilayer models or full-thickness volumetric 3D models.31,35–37,46,53–60,62–70 

Myofibre orientation is incorporated in 3D atrial models using fibre 

orientation atlases derived from histology, rule-based methods or 

methods that use morphological data of the endo- and epicardial 

surfaces and the local solutions of Laplace’s equations.65,71,72 Fibre 

orientation is critical for accurate organ-scale simulations.73 There 

are ongoing efforts to develop fibre orientation atlases derived 

from diffusion-tensor imaging cardiac MRI and incorporate them in 

atrial models.74 Novel approaches that derive fibre orientation from 

electroanatomic mapping or local electrograms are at different 

stages of development.75,76

Atrial fibrosis can be detected on late gadolinium enhancement 

MRI (LGE-MRI) as areas of increased gadolinium uptake using 

different thresholding techniques.31,35,77,78 However, the precision in 

imaging of AF with currently available LGE-MRI technologies remains 

controversial. Areas of fibrosis can be then represented in atrial models 

as electrical conduction disturbances (lower conductivity, edge splitting, 

or percolation), transforming growth factor-beta1 ionic channel effects, 

myocyte-fibroblast coupling, discrete microstructural alternations in 

gap junction connectivity, and combinations of the preceding.25,33,35,79–81 

Selection of fibrosis modelling methodology is critical as the specific 

representation of fibrosis has a significant effect on rotor dynamics.62,81 

There is an urgent need for quantification of the uncertainty related to 

imaging, fibrosis detection and fibrosis representation, and incorporation 

of this uncertainty in model predictions.82,83

Modelling of Mechano-electrical Feedback
Atrial mechano-electric feedback refers to alterations in cell- or 

tissue-scale electrophysiological properties as a result of changes 

in the loading conditions of the atria. Atrial stretch has been 

associated with alternations in myocardial electrophysiology in 

experimental studies, but its role in AF pathophysiology remains 

unknown.84,85 Incorporation of mechano-electric feedback in atrial 

models, although methodologically challenging, is necessary to 

understand the contribution of atrial mechanics and atrial stretch 

in the pathophysiology of AF. There are limited studies incorporating 

mechano-electrical feedback in atrial models, since simulations using 

strong electromechanical coupling are extremely computationally 

demanding. Strong electromechanical coupling refers to the modelling 

approach where changes in electrophysiological state variables 

result in atrial tissue deformation, and atrial tissue deformation 

alters the electrophysiological parameters that determine different 

ionic currents and the action potential. The first 2D atrial model 

that incorporated mechano-electrical feedback was developed by 

Brocklehurst et al. by strongly coupling the electrophysiological 

model of Colman et al. to the mechanical myofilament model of Rice 

et al., with parameters modified based on experimental data.86–88 

A stretch-activated channel was incorporated into the model to 

simulate the mechano-electrical feedback. Satriano et al. developed 

a 3D implementation of a strongly coupled electromechanical atrial 
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model using reconstructed images from a porcine heart and ex vivo 

experimental validation.89

Mechanistic Insights into AF Initiation and 
Maintenance Using Computational Modelling
Atrial computational modelling allows integration of experimental and 

clinical findings, and provides insights in the fundamental mechanisms 

involved in initiation and perpetuation of AF. Increased pulmonary 

vein ectopy is the primary mechanism of paroxysmal AF initiation.90 

Maintenance of persistent AF occurs due to electroanatomical 

remodelling of the atria. Re-entrant drivers within regions of structural 

or functional inhomogeneities have a significant role in maintenance 

of persistent AF.91 Structural and electrical remodelling have been 

incorporated in atrial models to investigate potential links between 

the altered electroanatomical substrate in AF, and the dynamics of 

AF re-entrant drivers. Key structural and functional alternations that 

are mechanistically linked to AF and have been studied using atrial 

modelling are pulmonary vein (PV) ectopy, presence of atrial fibrosis 

and its distribution, atrial wall thickness heterogeneity, atrial adipose 

tissue infiltration, development of repolarisation alternans, cardiac ion 

channel mutations, and atrial stretch with mechano-electrical feedback 

(Figure 2). Although atrial autonomic innervation and remodelling have 

a significant role in AF maintenance, current atrial modelling studies 

have not incorporated the distribution or remodelling of autonomic 

nerve fibres, primarily due to the limited ability to visualise these 

structures with clinically available imaging technologies.92,93

Pulmonary Vein Ectopy as an AF Trigger and the Role 
of Pulmonary Veins in AF Maintenance
Increased PV ectopy is the primary mechanism of arrhythmia initiation 

in paroxysmal AF.90 Cellular mechanisms that have been proposed 

for the generation of PV ectopy include increased automaticity 

and afterdepolarisations of the cardiomyocytes in the PV sleeves.94 

There are limited modelling studies evaluating PV ectopy, as 

previously reviewed.12 Briefly, PV ectopy has been modelled as 

increased automaticity of PV atrial cells, through the incorporation 

of a hyperpolarisation-activated inward current to human atrial cell 

models, and micro-reentry within the PV sleeves. Recently, Roney et al. 

demonstrated that the electrophysiological properties and the extent 

of fibrosis of the PVs are associated with patient-specific susceptibility 

to AF initiation and maintenance.31 Short PV APD and slow conduction 

velocity at the LA/PV junction was associated with increased arrhythmia 

susceptibility, while longer PV APD was protective. The presence of PV 

fibrosis was associated with increased incidence of re-entrant drivers 

in the PVs region.31 Future studies should evaluate how a biophysically 

and structurally detailed model of ectopy in the PV sleeves would drive 

the atria into paroxysmal AF.

Role of Fibrosis in AF Dynamics
There is conflicting clinical evidence on the role of fibrosis in re-entrant 

drivers dynamics in patients with AF. In two studies (n=12–41), re-entrant 

drivers observed during AF, localised in the boundary zones between 

fibrotic and non-fibrotic atrial myocardium.58,95 In three studies, there 

Clockwise: Pulmonary vein ectopy and AF inducibility, gap junctional uncoupling, development of repolarisation alternans, atrial stretch with mechano-electrical feedback, characterisation of 
the fibrotic atrial substrate, tissue restitution properties, ion channel mutations, atrial wall thickness heterogeneity and adipose tissue deposition (Source: Mahabadi et al. 2017.120 Reproduced 
with permission from the Public Library of Science). APD = action potential duration; PV = pulmonary vein. 

Figure 2: Mechanistic Insights from AF Modelling
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was no association between re-entrant driver localisation and LGE-MRI 

fibrosis.96–98 Both invasive and non-invasive methods for rotor detection 

were used in these studies.58,95–98 The discrepancy between the results 

of these studies could be due to differences in patient cohorts,  LGE-

MRI acquisition, image processing, and fibrosis definition, and electrical 

signal processing and rotor detection strategies. In the setting of this 

clinical equipoise, atrial modelling provides unique insights in the role 

of fibrosis in AF dynamics.

Atrial modelling studies strongly support that the extent and 

distribution of atrial fibrosis are critical determinants of AF initiation, 

maintenance, and re-entrant driver dynamics during AF. In a sensitivity 

analysis of simulations using realistic atrial geometry, the extent 

and distribution of fibrosis had a greater impact on re-entrant driver 

localisation over alternations in tissue wavelength.31 Although diffuse 

fibrosis is sufficient for initiation of AF in simulations,patient-specific 

fibrosis distribution determines re-entrant driver dynamics.25,32–35 In two 

separate studies using patient-specific atrial geometry and fibrosis 

distribution derived from LGE-MRI, the re-entrant drivers that occurred 

during AF localised in the boundary zones between fibrotic and non-

fibrotic atrial myocardium.33,34 These zones had a highly specific fibrosis 

spatial pattern, characterised by high fibrosis density and entropy, and 

corresponded to atrial areas with high degree of intermingling between 

fibrotic and non-fibrotic atrial myocardium.33

The role of fibrosis in AF dynamics has also been studied using 

a probabilistic approach with cellular automata models.99 Cellular 

automata are simple models where a set of rules dictates the transition 

of each cell between a resting, excited or refractory state. Fibrotic 

atrial tissue has been incorporated in cellular automata models as 

decreased probability of a cell to be connected with its transverse 

neighbours, reflecting the lateralisation of connexin-43 that is present 

in fibrotic atrial tissue.99 Progressive fibrosis significantly changed the 

frequency, duration, burden and dynamics of AF episodes. Similar to the 

simulations using biophysically detailed atrial models described above, 

micro-reentrant wavefronts in cellular automata models anchored at 

regions with critical fibrotic architectural patterns. The number of local 

critical patterns of fibrosis rather than the extent of global fibrosis 

determined AF dynamics.

The association between patient-specific fibrosis distribution and 

re-entrant driver dynamics has been experimentally validated using 

a single ex vivo atrial preparation from a patient with longstanding 

persistent AF.55 In this study, a detailed 3D atrial model was reconstructed 

from both LGE-MRI and histology sections. Simulations using this 

model demonstrated that AF re-entrant drivers localise in areas with 

distinct structural features, specifically intermediate wall thickness 

and fibrosis as well as twisted myofibre orientation. Future studies, 

however, are needed to ascertain the association between re-entrant 

driver dynamics and fibrosis, as well as the contribution of re-entrant 

drivers to AF pathophysiology as it remains controversial.100,101

Role of Wall Thickness Heterogeneity in AF Re-entrant 
Driver Dynamics
Atrial wall thickness heterogeneity is a structural property of the 

atria that has a significant impact on AF re-entrant drivers’ trajectory 

and localisation.36,37 In simulations using models with both idealised 

and realistic atrial geometry, re-entrant drivers drift from thicker to 

thinner regions along ridge-line structures.36,37 In simulations using 

bi-atrial models reconstructed from MRIs of healthy volunteers (n=4) 

and patients with AF (n=2) the effect of wall thickness heterogeneity 

on re-entrant drivers trajectories was more prominent in the right 

atrium (RA), while in the LA, re-entrant driver trajectory was primarily 

determined by fibrosis distribution. In the RA, re-entrant drivers drifted 

toward and anchored to the large wall thickness gradient between the 

crista terminalis and the surrounding atrial wall. In the absence of such 

a gradient, re-entrant drivers drifted toward the superior vena cava 

or the tricuspid valve. In the presence of fibrosis, re-entrant drivers 

anchored to either the fibrotic region or between the crista terminalis 

and the fibrotic region, depending on the location in the RA from where 

they were elicited. The more uniform wall thickness of LA resulted 

in LA re-entrant drivers drifting towards the PVs in the absence of 

fibrosis, or anchoring in the fibrotic region in the presence of fibrosis.37 

A limitation of these studies is that fibre orientation was not included 

in the reconstructed atrial models. These findings highlight the complex 

interplay between atrial geometry, wall thickness gradients and fibrosis 

distribution that ultimately determine the dynamics of AF re-entrant 

drivers.

Adipose Tissue and its Effect on AF Dynamics
There is emerging evidence that AF-induced remodelling is 

characterised by increased deposition of epicardial adipose tissue 

and adipose tissue infiltration in the atrial myocardium. The presence 

of adipose tissue in or around the atrial myocardium has a paracrine 

pro-fibrotic effect.102 Only one study to date uses atrial modelling 

to gain insight in the potential effects of fibro-fatty infiltration on 

AF dynamics.26 In 2D simulations, the Courtemanche cell model 

was modified to represent atrial electrophysiology similar to what 

is experimentally observed when myocytes are co-cultured with 

adipocytes (69–87% increase in APD and 2.5–5.5A mV increase in 

resting membrane potential). The presence of adipose tissue-induced 

remodelling substantially affected spiral wave dynamics resulting in 

complex arrhythmias and wave breakup. Future studies are needed 

to elucidate the electrophysiological properties of adipocytes, and the 

electrophysiological alternations of atrial myocytes induced by the 

presence of adipose tissue. Incorporation of these findings in atrial 

models will allow us to understand how the presence of adipose 

tissue in or around the myocardium affect the propensity for and 

dynamics of AF.

Evaluating the Role of Atrial Stretch in AF Dynamics by 
Modelling Mechano-electrical Feedback
The role of atrial stretch in the onset and maintenance of AF is 

incompletely understood to date. Acute atrial stress is associated 

with conduction slowing and complex signal formation in the PV-LA 

junction in humans and prolongation of atrial refractory period 

in animal studies.84,85 There is accumulating evidence that most 

voltage-sensitive ion channels that give rise to the cardiac action 

potential can be mechanically modulated, and that medications can 

affect the mechanosensitivity of ion channels (i.e. ranolazine inhibits 

mechanosensitivity of NaV1.5).103,104 Computational modelling has 

been used to integrate the cell-level electrophysiological alternations 

induced by atrial stretching with the distribution of stretch on the 

atria, and its time evolution over the cardiac cycle, incorporating 

mechano-electric feedback in atrial models as described in above. 

In 2D simulations using the electromechanical model of Brocklehurst 

et al., the presence of mechano-electrical feedback significantly 

affected spiral wave tip trajectories, stability,  excitation frequencies 

and meandering range (Figure 3).86 Contrary to this, in whole organ 

3D simulations using the Satriano et al. model, the role of stretch-
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activated channels was very small during a single-beat of sinus 

rhythm.87 Simulations using the model of Satriano et al., however, 

demonstrated that higher strain occurs in areas adjacent to the 

mitral valve annulus, rim of the appendage, pulmonary vein trunks 

and Bachmann’s bundle.89 These are regions where atrial arrhythmias 

are most likely to occur. Further studies are needed to assess the 

potential impact of mechano-electrical feedback on AF dynamics in 

whole heart simulations.

Mechanisms of Atrial Repolarisation Alternans and 
their Role in AF Dynamics
Atrial repolarisation alternans is the beat-to-beat alternation in APD 

that is observed in atrial myocytes when they are excited at fast rates. 

The onset of atrial repolarisation alternans has been associated with 

increased risk for development of AF in animal models and limited 

human data.105–107 Simulations using biophysically detailed atrial models 

have provided a unique insight in the sub-cellular mechanisms of 

atrial repolarisation alternans.27 Furthermore, multiscale models with 

realistic atrial geometry comprehensively describe how the cell-scale 

phenomenon of repolarisation alternans results in the organ-scale 

behaviour of AF.38 In simulations, decreased ryanodine receptor 

inactivation has a central role in development of repolarisation 

alternans. Specifically, decreased ryanodine receptor inactivation 

results in augmentation of Ca++ alternans, ultimately manifesting 

as repolarisation alternans.27 These results are consistent with 

experimental findings demonstrating that for the same sarcoplasmic 

reticulum Ca++ load, repolarisation alternans can occur due to changes 

of ryanodine receptor refractoriness.108,109 In 3D simulations with realistic 

atrial geometry, elevated propensity to calcium-driven repolarisation 

alternans due to chronic AF electrical remodelling  was associated with 

increased vulnerability to ectopy-induced arrhythmia. The presence 

of Ca++-induced electrical instabilities promoted disorganisation of AF 

through increased repolarisation heterogeneities, resulting in unstable 

scroll waves meandering and breaking in multiple wavelets.38

Mechanisms of AF in the Presence of Ion Channel 
Mutations
Rare cases of AF are associated with mutations in genes that encode 

critical cardiac ionic channels.110–115 The sparsity of clinical data on 

these cases renders computational modelling a critical methodology for 

studying the pathophysiology of AF in the presence of genetic mutations. 

Mutations related to AF studied in a computational modelling framework 

are those in genes encoding for K+ channels and specifically hERG gene 

encodes for IKr channels and is associated with short-QT syndrome 1 

(representative mutations L532P and N588K), KCNQ1 gene encodes for IKs 

channels and is associated with short-QT syndrome and familial/juvenile 

AF syndrome (representative mutations G229D, V307L and V141M), 

and KCNJ2 gene encodes for IKr1 which is an inward-rectifier K+ current, 

associated with short-QT syndrome  3 (representative mutations D172N 

and E299V). The effect of these mutations on cardiac dynamics has been 

evaluated in tissue-scale simulations,24 and 3D atrial modelling studies 

incorporating realistic atrial geometry.28–30

Gain-of-function mutations in hERG, KCNQ1 and KCNJ2 genes result 

in shorter action potential duration. Atrial models incorporating gain-

of-function mutations in these genes had shorter APD and refractory 

period compared to wild-type models.24,28–30 These models exhibited 

greater inducibility of spiral wave re-entry in tissue level (Figure 4) and 

organ-level simulations, reduced tissue excitation wavelength, which 

caused greater inducibility of spiral wave re-entry in organ-level 

simulations, and increased lifespan of re-entrant drivers.24,28–30 The 

presence of the KCNQ1 gain of function mutation G229D was 

associated with increased propensity for spiral wave breakup.28

Snapshots of tissue deformation and membrane action potential conduction in the full 
electro-mechanical model during a spiral wave excitation in a 2D electro-mechanical 
coupling model of human atrial tissue (x, y: μm). Source: Brocklehurst et al. 2017.86 
Reproduced from the Public Library of Science.

Figure 3: Electro-mechanical Dynamics of Spiral Waves
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Trajectories of the rotor centre in 2D tissue patch for different stimulation widths (A) and 
times (B) in the modified Courtemanche–Ramirez–Nattel (control) model and the same model 
adapted to capture the electrophysiological effects of two representative hERG mutations 
that are associated with AF (L532P and N588K). The control model failed to initiate a spiral 
wave by using the S1–S2 cross-field protocol. The models adapted to L532P initiated a rotor 
for all investigated setups except a stimulus width of 20 mm (A). In contrast, the model 
adapted to N588K failed to initiate a rotor for stimuli <40 mm or later than 2 ms (B).  
Source: Loewe et al. 2014.24 Reproduced with permission from Oxford University Press.

Figure 4: Trajectories of the Rotor Centre 

Stimulation width (mm)

Stimulation time (ms)

Time (s)

4 cm

500 ms

A
20 25 30 35 40 45 50

–2 0 +2 +6 +10 +20 +35

Control

N588K
–1:1

L532P
–1:1

B

C D

0 1 2 3 4 5

Control

N588K
–1:1

N588K–1:1 L532P–1:1

L532P
–1:1



AF Mechanisms Through Computational Modelling and Simulations

A R R H Y T H M I A  &  E L E C T R O P H Y S I O L O G Y  R E V I E W216

Electrophysiology and Ablation

Population of Models to Capture Cohort-specific 
Variability
Population of cell models calibrated to cohort-specific distributions 

of action potential properties are a powerful tool to capture the inter-

subject, cohort-specific variability of atrial electrophysiology. In a study 

applying this approach, an initial population of >2,000 biophysically 

detailed atrial cell models were generated, in a way that each model 

had a unique set of ionic conductance combinations, stochastically 

selected over a wide range around their values in the original model.116 

Distributions of different properties of action potential morphology 

were estimated from experimental recordings in patients with AF. A 

subset of the initial population of models was then selected, such as 

the selected models had an action potential morphology that lies within 

the experimentally-derived action potential distribution (Figure 5).116,117 

Analysis of populations of models calibrated to recordings from atrial 

preparations of patients with AF (n=149) and sinus rhythm (n=214) 

demonstrated that models calibrated to AF have variations in IK1, IKur, and 

Ito conductances consistent with AF-induced remodelling.116 Populations 

of models calibrated to action potential recordings from atria in sinus 

rhythm and AF identify potential ionic determinants of inter-subject 

variability in human APD and action potential morphology.116 Populations 

of models calibrated to patients with AF have smaller APD variability 

and more stable dynamic restitution compared to populations of 

models calibrated patients in sinus rhythm.117

Populations of ionic models calibrated to recordings from patients 

with AF have been used in 3D simulations of idealised51 and realistic118 

atrial geometry models to provide novel insights in the mechanisms 

involved in AF maintenance. Higher expression of INa and ICaL was 

associated with perpetuation of AF.51 ICaL inhibition resulted in increased 

re-entrant drivers meandering and ultimately re-entrant driver collision 

and termination of AF, particularly in models with decreased INa.
51 

Prolongation of APD in all phases of repolarisation caused slowing 

and regularisation of fibrillatory dynamics. Specifically, inhibition of 

IK1, INaK and INa resulted in organisation of AF.118 The same inhibition of 

ionic currents was able to produce different effects on AF dynamics 

in atrial simulations using cells modelled to have the same variability 

as human experimental data.51,118 The next frontiers in development of 

cohort-specific model populations are to develop model populations 

calibrated to different AF sub-types according to AF burden (i.e. 

paroxysmal, persistent and long-standing persistent AF) and use 

them in simulations to gain subtype-specific mechanistic insights, 

and to incorporate biomarkers that further refine model selection by 

describing more specific disease phenotypes.

Future Perspectives
Computational modelling of AF has emerged as a critical part of the 

scientific effort to better understand the complexity and variability in 

AF pathophysiology. Atrial models are becoming more sophisticated 

and capture fine details of atrial anatomy, ultrastructure, and fibrosis 

distribution. Personalisation of atrial models is slowly extending 

beyond geometrical, image-based model personalisation to functional 

and electrophysiological personalisation that can be cohort-specific 

or patient-specific. Simulations using atrial models have provided 

important insight in the mechanisms underlying AF, highlighting the 

importance of the atrial geometry, fibrotic substrate and altered atrial 

electrophysiology in initiation and maintenance of AF.

There are some limitations in the mechanistic insights that one 

can gain using currently available atrial models. There is a need for 

more accurate PV ectopy models. Future studies should focus on 

development of accurate models of PV electrophysiology, structure 

and fibrosis distribution, that can be used to investigate how patient-

specific predisposition to PV ectopy, in conjunction with patient-

specific substrate, result in the onset and maintenance of AF. 

Computationally efficient models that incorporate mechano-electrical 

feedback need to be developed, to understand the impact of different 

loading conditions on the electrophysiological heterogeneities of 

the atrial and how these heterogeneities affect AF initiation and 

dynamics. Models with mechano-electrical feedback can also be used 

to evaluate the haemodynamic effect of AF and the potential benefit 

of rhythm control. Current atrial models capture patient-specific atrial 

anatomy and fibrosis distribution, but there are only limited studies 

incorporating patient-specific atrial electrophysiology. 

Future modelling approaches should focus on developing models 

that capture patient-specific atrial electrophysiology. This could be 

accomplished by calibration of currently available models using patient-

specific electrophysiological measurements, or utilisation of genomic 

and/or transcriptomic data. Addition of genomic and/or transcriptomic 

Simulated normal sinus rhythm (nSR) and chronic AF (cAF) populations: steady-state 
action potential (AP, upper) and calcium transient amplitude (CaT, middle) traces and a 
few representative dynamic restitution curves (lower). AP and CaT traces and restitution 
curves of the nSR baseline are also shown for comparison. The x-axis in restitution curves 
represents pacing cycle length in ms. The populations (1,000 models each) were functionally 
calibrated, resulting in 213 models in the nSR population and 357 in the cAF population. 
AP = action potential; APD = action potential duration; cAF = chronic AF; CaT = calcium 
transient amplitude; PCL = pacing cycle length. Source: Vagos et al. 2017.117 Reproduced with 
permission from AIP Publishing.

Figure 5: Simulated Normal Sinus Rhythm and Chronic AF
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data to atrial models could allow for electrical personalisation by 

incorporating the predicted impact that different polymorphisms have 

on ionic channels and currents. 

There is still incomplete understanding of the electrophysiological 

substrate present in different stages of AF progression. Characterisation 

of atrial electrophysiological properties, such as APD, APD restitution, 

conduction velocity, conduction velocity anisotropy and restitution at 

different stages of AF progression could allow computational models 

to more accurately describe AF dynamics, and provide insights in the 

mechanisms involved in progression of AF. Currently available models 

do not include a patient-specific representation of fibre orientation. 

Technological progress that will allow for derivation of patient-specific 

fibre orientation from imaging or electrophysiological measurements 

is an area of current investigation, with the potential to facilitate 

incorporation of patient-specific fibre orientation in atrial models. 

Currently available models do not include information about autonomic 

innervation of the heart. Future models should incorporate both the 

global effects of autonomic tone on atrial electrophysiology, as well as 

the local effects of atrial ganglionic innervation and remodelling.

The considerable uncertainty in atrial models arises both from natural 

variation in experimental and clinical data (aleatory uncertainty), and 

lack of knowledge (epistemic uncertainty). The impact of uncertainty 

on the outputs of atrial models is not well understood.83 There are 

limited studies on verification, validation and uncertainty quantification 

of atrial models.52,53 Future studies should prioritise uncertainty 

quantification and incorporation of it in atrial models and specifically 

determine how uncertainties in the cell-scale atrial models contribute 

to uncertainties in emergent behaviours of organ-level models, 

and how these uncertainties can be visualised and interpreted by 

experimentalists or clinicians. Statistical approaches such as Monte 

Carlo techniques, polynomial chaos expansions and Gaussian process 

emulation can be used to incorporate uncertainty in atrial models. A 

more detailed discussion of these techniques is provided in the review 

by Mirams et al.83 

The mechanistic insights in AF provided by computational modelling 

and simulations will continue to grow in a virtuous cycle with 

experimental and clinical cardiac electrophysiology findings. The next 

frontier for atrial multi-scale modelling is to expand beyond the “whole-

organ” scale to the “whole-patient” scale and incorporate mechanistic 

links for all clinical factors related to onset and progression of AF. 

Machine learning approaches have the potential to be combined 

with computational modelling to raise computational modelling 

to the ‘whole-patient’ scale.119 Development of a patient-specific 

understanding of the mechanisms for AF initiation and progression is 

the most essential step towards precision medicine and development 

of personalised AF prevention or therapeutic strategies. 

Clinical Perspective
• Atrial models can be used to gain mechanistic insights into AF.

• A complex interplay between atrial geometry, fibrosis 

distribution and wall thickness heterogeneity determines 

re-entrant driver localisation during AF.

• While there is conflicting clinical evidence on re-entrant driver 

localisation with respect to atrial fibrosis, in simulations, 

re-entrant drivers coalesced in areas at the border between 

fibrotic and healthy myocardium.

• Adipose tissue deposition in the left atrium promotes wave 

breakup and complex arrhythmia formation.

• Development of atrial repolarisation alternans promotes 

repolarisation heterogeneity that results in arrhythmia 

instabilities and wave breakup.

• Atrial modelling can be used to predict the effect of different 

ion channel mutations on AF initiation and maintenance.
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